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The short-time evolution of a class of nonlinear Klein-Gordon systems is studied. 
For nonzero mass, the short-time behavior of the field variable has an inverse-sine 
spectrum rather than an exponential one. 

The short-time behavior of  a certain class of  nonlinear potentials has 
recently been studied by a number  of  authors (Bocchieri et al., 1970; Casati 
et  al., 1980; Callegari et  al., 1979; Benettin et  al., 1980; Livi et  al., 1983, 
1985a, b; Sulem et al., 1983). Apart  from deriving simple scaling laws, these 
studies have revealed that the analytic continuation of the field variable to 
the complex domain introduces singularities into the structure of  the 
solutions. As such, a perturbative approach appears to be ruled out. 

Most such studies on nonlinear systems have been carried out using 
standard computational  techniques (Bocchieri et al., 1970, Casati et al., 
1980; Callegari et  al., 1979; Sulem et al., 1983). These systems include the 
Fermi-Pas ta -Ulam (FPU) model (Fermi et al., 1965) as well as those 
described by Lennard-Jones (Galgani and Lo Vecchio, 1979; Benettin et  
al., 1980) and Aqb" potentials (Butera et  al., 1980). However, it has been 
pointed out (Livi et aL, 1983) that if one neglects the effects of all the linear 
terms, a class of  nonlinear potentials may yield simple analytical solutions 
valid at very short time. 

The purpose of this work is to study the short-time behavior of  systems 
described by FPU and power law potentials with a view to obtaining more 
exact solutions. In this regard, we have considered the effects of  the linear 
term involving the mass parameter  and have obtained our solutions in closed 
form. An interesting characteristic of nonlinear Kle in-Gordon as well as 
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FPU potentials is that an analytical continuation of the field variables to 
the complex domain yields singularities that are just simple poles. 

Consider a class of nonlinear Klein-Gordon potentials described by 
the Hamiltonian density 

H(m o~) =2L \~7/ 2n 

where ~- represents the conjugate momentum of the field variable �9 and 
n = 2, 3 , . . .  stands for the possible degree of the potential. We assume that 
our field variable ~(x,  t) is defined on a finite-length interval (0~< x ~< l) 
and is governed by the initial conditions of the type 

�9 (x, 0) = A cos(kx) 
(2) 

6(x ,  o) = o 

In (2), k = 2r and the dot denotes the partial differentiation with respect 
to time. 

To obtain the short-time evolution of the solutions that follow from 
(1), the standard procedure (Sulem et al., 1983) is to analytically continue 
�9 (x, t) to the complex function ~ (Z ,  t), where Z = x + iy. If now ~(Z ,  t) 
is approximated by a form 1 / ( Z -  Zo) ~, where Zo is a dominant singularity 
and ~ is a constant, the Fourier transform of ~(x,  t) may be obtained as 
(Sulem et al., 1983) 

Iq~(K, t)l 2 ~ K 2(g-') e x p [ - 2 K l y ( t ) l ]  (3) 

Clearly, the rhs of (3) represents an exponentially shaped spectrum. 
However, in the models that we explore below, we shall see that the 
short-time behavior of the field variable is governed by an inverse-sine curve 
(rather than an exponential spectrum) even in the presence of simple poles. 

To see that (1) yields simple poles, we consider the equation of motion 
and analytically continue it to the complex plane. 

Let us consider n = 2. From (1), the equation of motion may be obtained 
a s  

[[] (I~ = - m 2 d p  --  AdP 3 (4a) 

whose analytic continuation to the Z plane is 

02~ 02~ 
m 2 a I  t - -  ~. at't3 (4b) 

a t 2  - -  O Z  2 

If  the dominant singularity is of the form 1 / ( Z  - Zo) ~, then it can be checked 
from (4), by comparing the leading terms, that /z  = 1. Thus, the singularity 
of (4) is indeed a simple pole. 
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Livi e t  al .  (1985b) showed, by neglecting the effects of all the linear 
terms, that in the presence of singularities like simple poles, the time 
evolution of the system (4a) behaves like an exponential curve. A similar 
behavior has been found to hold for the FPU and 1~)6 theories. In the 
following, we retain the mass term in the equations and show by an explicit 
analytic evaluation that the exponential shape of the field variable at small 
times may get distorted for moderately large values of  m 2. 

An analytical continuation of (4) to the complex plane results in the 
following pair of coupled equations (by separating real and imaginary parts) 

~R = * ~ -  m 2 * R -  A (q~3_ 3 ~ R ~ )  (5a) 

@r = air[ -- m 2a'Iti + A (a,tr3 - 3~2'~a-IY i) (5b) 

where a prime stands for the partial differentiation with respect to Z. 
To enquire into the dynamics of the model, we set ~R = 0 and note 

that at sufficently small times, the spatial derivative term ~ '  will not 
contribute significantly (Livi e t  a l . ,  1985b). As a result, we obtain from 
(5) 

~ ,  = - m 2 ~ i  + A~ 3 (6) 

Using conservation of energy, we can invert the above equation to give 

t = ~ ~2arr2.a - l~alr4~l/2 (7) 
i(0) k -IIL X l - - 2 / t  ~rl /  

where t stands for the time needed to reach infinity from the point ~R = 0, 
q~i = ~i(0).  Interestingly, even in the presence of the rn: term, the integral 
in (7) may be evaluated in a closed form to obtain 

t = ~ l  m 2 - s e e - 1  

which yields 

1 
~i(0)  = m sin(rot) (8b) 

To check the consistency of the solution (8) with the result obtained 
by Livi e t  aL  (1985b), we apply the l 'H6spital rule to the rhs of (8a) 
and pass to the limit as m - 0. It is readily seen that @~(0) turns out to be 
1/(~ ~/2t ) .  

The initial conditions (2) allow one to have an estimate of Im ~ (Z ,  0) 
when the values o f y  are large. By analytically continuing (2) to the complex 
plane, Im ~ (Z ,  0) may be obtained as 

Im V(Z, 0) - a exp(ky) (9) 
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for large y. We now postulate that the location of the singularity of ~(Z,  0) 
will be at the same place where Im ~(Z,  0) is roughly of the same order of 
magnitude as ~ ( 0 ) .  We then obtain from (8b) and (9) 

1 sin_l ~,/2rn ] t = - -  exp(-  ky) (10) 
m 

Thus, the shape of t is an inverse-sine curve and is seen to depend explicitly 
on the mass parameter m. It is to be stressed that m 2 in (1) need not be 
treated as a small parameter and as such may contribute significantly as in 
(10) even when t->0. Thus our result for t in (10) is to be considered as 
an improvement over what was obtained without the mass term (Livi et al., 
1985b), namely 

1 
t =--~--~ e x p ( - k y )  

An analogous treatment to extract the short-time evolution of qb(x, t) 
can also be applied to Klein-Gordon potentials corresponding to n = 
3 , 4 , . . . .  

We now consider the FPU model, whose Hamiltonian density is given 
by 

1[(~ (~ ( I , )  
H =-~ \ a t /  \ ax / _1 4 \ ax ] 

where/~ is a parameter. 
It is not difficult to see that the equation of motion corresponding to 

(11) m a y b e  reduced (Livi et aL, 1983, 1985b), by using (2), into the form 

02 
"~r I (X  , t ) = - C a r l ( x  , t ) -  C2rl3(x, t) (12) 

for sufficiently small times. In (12), r/(x, t )=  (O/Ox)Cb(x, t) and the para- 
meters Ca and C2 stand for 

C1 = k2(1 - 6/3A2k2), C2 =9/3k 2 (13) 

As before, we now split r/ into a real part r/R and an imaginary part 
~7~. The analog of (6) then reads 

~, = -k2(1  - 6~AZk ~) r h + 9~k2713 (14) 

which may be readily solved to obtain 

1 [ ~  ]1/2 1 (15) 
~x(0) =3  (1 - 6/3A2k 2) sin[k=(1 _6t@Aek=)]~/2t 
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By combin ing  the above relat ion for  ~t(0) with the imaginary  par t  o f  the 
analyt ic  cont inuat ion  o f  the initial condi t ion (2) in the complex  domain ,  
we find, for  large y, that  in the FPU case, too,  the shape of  t turns out  to 
be an inverse-sine curve,  namely  

t = k ( 1 - 6 ~ A 2 k 2 )  1/2 sin (1-613A2k2) 1/2 e x p ( - k y )  (16) 

As in the Aqb 4 case, here also the shape  of  t is sensitive to the coefficient 
o f  the ~ te rm in (14). 

To summar ize ,  we have  shown that  it is possible  to solve analyt ical ly 
the equat ions  of  mot ion  of  a class of  nonl inear  wave equat ions  even in the 
presence  of  the mass  term, which is essentially l inear in character .  Our  
studies of  AdP ~ and F P U  types  of  potent ia ls  have shown that  the short- t ime 
behav io r  o f  the field var iable  obeys an inverse-sine curve rather  than  an 
exponent ia l ly  shaped  spec t rum as ob ta ined  in Livi et at. (1983, 1985b). The  
reason lies in the fact that  in all these studies, the l inear par t  of  the equat ion  
of  mo t ion  involving the mass  pa rame te r  has been  neglected. Since there is 
no just if ication for  delet ing such terms even for  sufficiently short  t imes,  the 
exact  results repor ted  here should provide  a bet ter  unders tanding  of  the 
dynamics  of  nonl inear  systems. 
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